

LUNG HEALTH and INTENSIVE CARE SOCIETY

EBUS Guided Mediastinal Lymph node Sampling

The Future of Lymph node Sampling

Dr. Hari Kishan Gonuguntla M.D, D.M Yashoda Hospitals, India

Objectives

Endobronchial Ultrasound in Lung Cancer Diagnosis

EBUS scopes

EBUS in the Era od Molecular Testing and NGS

Future of Lymph node Sampling

"Everything we see hides another thing; we always want to see what is hidden by what we see. There is an interest in that which is hidden and which the visible doesn't show us"

Rene Magritte [quoted in Sylvester: Magritte, the Silence of the World. Huston, Menil Foundation, 1992, p 24]

The Need to Develop Endobronchial Ultrasound

- 1980 CT was the standard for Pre-operative staging
- Primary Tumors and Metastasis -
- Lymph nodes and Airway Involvement X
- The view of Bronchoscopist in the airways was limited
- ✓ Discoloration
- ✓ Displacement
- ✓ Destruction
- Demand for a new pre-operative staging modality

How EBUS was in the air

- Ultrasound in Medicine 1970
- Late 80s Transesophageal Ultrasound and RP EBUS
- The GI EUS GIF -UM 3 -1989
- Mediastinum still in question !
- > Large size of the GI scopes
- Access to all lymph node stations

This led to transfer of application to endobronchial space

EBUS Development (1990-1994)

- UM 1-W/ Olympus
- Market 1990
- GI application small ducts
- 7.5 MHz, 360 degree / OD 3.4
- Rigid Bronchoscopy application

Thomas Hurther - Aachen

- Miniature probe blood vessels
- Boston sc sonocath probes

First to publish - First Pioneer 1992 paper / 100 patients' data

EBUS Development (1994 - 1999) - Radial Probes

M.Krasnik - request for integrated EBUS Scope

EBUS Development (1999) - Prototype EBUS Scopes

1999 - First prototype - BUMP - XBF-UM30P

1999

1st prototypes XBF-UM30 (BF-UM40)

EBUS Development (2002) - Prototype EBUS Scopes

2002 - BF Convex

LUNG CANCER

Preliminary experience with a new method of endoscopic transbronchial real time ultrasound guided biopsy for diagnosis of mediastinal and hilar lesions

M Krasnik, P Vilmann, S S Larsen, G K Jacobsen

Thorax 2003;58:1083-1086

 Table 1
 Demographic data of 11 patients describing the clinical problem, location of lesions targeted by EBUS-FNA, and treatment

Patient	Location of lesion targeted	Cytology results	Treatment
Unknown hilar lesion, suspicion of recurrent renal cancer	10L	Clear cell carcinoma	Chemotherapy
Unknown mediastinal mass	10L	Squamous cell carcinoma	Explorative surgery (inoperable oesophageal cancer)
Right sided lung cancer	10R	NSCLC	Chemotherapy
Right sided lung cancer	10R 4L	Benign NSCLC	Chemotherapy
Recurrent lung cancer	10L	NSCLC	Chemotherapy
Unknown right sided mediastinal lesion	4R	Carcinoma	Pneumonectomy
Right sided lung cancer	10R 4R	NSCLC NSCLC	Chemotherapy
Unknown mediastinal lesion	10L	Benign	Mastectomy
Right sided lung cancer	10L	SCLČ	Chemotherapy
· · · ·	4R	SCLC	
Cava superior syndrome (unknown nature)	2R	Adenocarcinoma	Chemotherapy
Left sided lung cancer	1	Carcinoma	Chemotherapy
•	7	Carcinoma	

- 11 patients
- 15 Lesions
- 13 Malignant
- 02 Benign
- No complications

Recommendations (2007)

Invasive Mediastinal Staging of Lung Cancer

ACCP Evidence-Based Clinical Practice Guidelines (2nd Edition)

Detterbeck Frank C., MD, FCCP & ⊠ ● Jantz Michael A., MD, FCCP ● Wallace Michael, MD, FCCP ●

Vansteenkiste Johan, MD, PhD • Silvestri Gerard A., MD, FCCP

DOI: https://doi.org/10.1378/chest.07-1362

Conclusions

In patients with extensive mediastinal infiltration, invasive staging is not needed. In patients with discrete node enlargement, staging by CT or positron emission tomography (PET) scanning is not sufficiently accurate. The sensitivity of various techniques is similar in this setting, although the false-negative (FN) rate of needle techniques is higher than that for mediastinoscopy. In patients with a stage II or a central tumor, invasive staging of the mediastinal nodes is necessary. Mediastinoscopy is generally preferable because of the higher FN rates of needle techniques in the setting of normal-sized lymph nodes. Patients with a peripheral clinical stage I NSCLC do not usually need invasive confirmation of mediastinal nodes unless a PET scan finding is positive in the nodes. The staging of patients with left upper lobe tumors should include an assessment of the aortopulmonary window lymph nodes.

Recommendations (2013)

CHEST

Supplement

DIAGNOSIS AND MANAGEMENT OF LUNG CANCER, 3RD ED: ACCP GUIDELINES

Methods for Staging Non-small Cell Lung Cancer

Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines

Conclusions: Since the last iteration of the staging guidelines, PET scanning has assumed a more prominent role both in its use prior to surgery and when evaluating for metastatic disease. Minimally invasive needle techniques to stage the mediastinum have become increasingly accepted and are the tests of first choice to confirm mediastinal disease in accessible lymph node stations. If negative, these needle techniques should be followed by surgical biopsy. All abnormal scans should be confirmed by tissue biopsy (by whatever method is available) to ensure accurate staging. Evidence suggests that more complete staging improves patient outcomes.

CHEST 2013; 143(5)(Suppl):e2115-e250S

EBUS Scopes

- BF-UC 180 F
- BF-UC 190 F with 20 forward oblique view
- Processors : EU-ME1, EU-ME2, EU-ME3

- Angle of view 35° Forward oblique / 20 ° Forward oblique
- Scan Direction Longitudinal
- Insertion Tube Diameter 6.2mm / OD 6.9 mm
- Instrument Channel Diameter 2.2mm
- Angulation Up/down 120/90

EBUS Scopes

- EB-1970UK, EB19-J10U
- Hitachi ultrasound systems with thoracic probes

- Angle of view **45° Forward oblique**
- Scan Direction Longitudinal
- Insertion Tube Diameter 6.3mm
- Instrument Channel Diameter 2/2.2mm
- Angulation Up/down **120/90**

EBUS Scopes

- EB-530US
- SU-8000 ultrasound processor

- Angle of view **10° Forward oblique**
- Scan Direction Longitudinal
- Insertion Tube Diameter 6.3mm
- Instrument Channel Diameter 2mm
- Angulation Up/down 130/90

Established EBUS Scopes

	Diameter (mm)	Working channel (mm)	Working length (mm)	Field of view	Depth penetration (mm)	Frequency (MHz)	Scan modus	Comment
EB19-J10U Video EBUS-scope (Pentax)	7.3	2.2	600	100°/45° Oblique optic	2-50	5.0-13.0	Electronic 75° curved linear array	Compatible with Hitachi Hi-Vision Scanner
BF-UC190F Video-EBUS-scope (Olympus)	6.6	2.2	600	80°/20° Oblique optic	2-50	5.0-12.0	Electronic 65° curved linear array	Compatible with EU-ME2, Hitachi Aloka ProSound F75
EB-530US Video-EBUS-scope (Fujifilm)	6.7	2.0	610	120°/10° Oblique optic	3-100	5.0-12.0	Electronic 60° curved	Compatible with SU-1-S/H

Endobronchial Ultrasound - Clinical Applications

- Lymph node staging of Lung Cancer
 - Pre-operative staging Post-operative evaluation Restaging

Diagnosis of centrally located intra-pulmonary pathologies

 Mediastinal and Hilar adenopathy - Benign and Malignant Sarcoidosis (overall yield of 90-92%) Lymphoma (sensitivity 57-91%)

Endobronchial Ultrasound - Anesthesia

Outpatient

LMA /IGEL #4

TIVA + LMA

LA with conscious sedation

ET Tubes - 8 and above

GA vs Moderate sedation for EBUS TBNA - RCT

	General Anethesia (n=75)	Moderate Sedation (n=74)	P value
LNs sampled/pt	3.2 <u>+</u> 1.9	2.8±1.5	0.199
Dx Yield	70.7%	68.9%	0.816
Sensitivity	98.2%	98.1%	0.979
Completion Rate	100%	93.3%	0.028
Major Complication	0	0	
Minor Complication	5.3%	29.6%	< 0.001

Roberto F Casal et.al.Am J Respir Crit Care Med. 2015 Apr 1;191(7):796-803.

Standard EBUS Image Classification

Malignant Predictors

- ✓ Size > 1cm
- ✓ Round Shape
- ✓ Distinct Margins
- ✓ Heterogenous Echo signal
- ✓ Absence of CHS
- \checkmark High color power doppler index
- ✓ Absent CNS

			Positive Predictive	Negative Predictive	
Morphologic Category	Sensitivity	Specificity	Value	Value	Diagnosis Accuracy
Size: >10 mm	77.9	75.8	55.9	89.7	76.4
Shape: round	88.0	75.8	59.0	94.1	79.3
Margin: distinct	94.4	54.3	45.5	96.0	65.7
Echogenicity: heterogeneous	77.3	86.6	69.5	90.6	83.9
Central hilar structure: absence	89.7	53.5	43.3	92.9	63.8
Coagulation necrosis sign: presence	69.4	92.6	78.9	88.4	86.0

EBUS Imaging - Vascular Patterns

EBUS Imaging - Elastography

Group	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	+LR	-LR	AUC	Youden index
EBUS elastography	90.65	57.63	71.60	84.00	2.14	0.16	0.776	0.4827
ROSE	95.73	79.05	87.70	92.20	4.57	0.05	0.875	0.7478
Combination Group	85.84	92.65	95.10	79.70	11.67	0.15	0.940	0.7849

Combination of ROSE + Elastography

Fig. 3 Comparison of ROC curves of EBUS elastography, ROSE and combined EBUS elastography and ROSE groups

Beginners

- Forward Oblique view
- ✤ Reaching 4R , 10R and 4L
- Bronchoscopy image
- Use of second bronchoscope
- Financial implications

Figure 8.4(a)

EBUS - Procedural Aspects - Sampling Order

M1b - N3 - N2 - N1

EUS-B-FNA in lung cancer work up

EBUS + EUS b - Complimentary

Study	Events	Total		Proportion (95%CL)
Herth 2010	3	71		0.04 [0.01, 0.12]
Hwangbo 2010	3	45		0.07 [0.01, 0.18]
Kang 2014	1	34		0.03 [0.00, 0.15]
Lee 2014	6	29		0.21 [0.08, 0.40]
Liberman 2014	10	53		0.19 [0.09, 0.32]
Oki 2014	7	33		0.21 [0.09, 0.39]
Szlubowski 2010	6	28		- 0.21 [0.08, 0.41]
Vilmann 2005	3	20		0.15 [0.03, 0.38]
Wallace 2008	10	42		0.24 [0.12, 0.39]
Random-effects mo	odel	355	-	0.13 [0.08, 0.20]
a			0 0.1 0.2 0.3 0	4 0.5
Study	Events	Total	I	Proportion (95%CL)
Herth 2010	5	71		0.07 [0.02, 0.16]
Kang 2014	8	25		● 0.32 [0.15, 0.54]
Liberman 2014	15	53		0.28 [0.17, 0.42]
Oki 2014	9	33		- 0.27 [0.13, 0.46]
Szlubowski 2010	5	28		0.18 [0.06, 0.37]

0.2 0.3

0.4 0.5

0.1

0

0.20 [0.06, 0.44]

0.24 [0.12, 0.39]

0.21 [0.13, 0.30]

20

42

272

4

10

Vilmann 2005

Wallace 2008

Random-effects model

First Author	Year	NO.	Stage	Thoro	Prev	Sens	Spec"	PPV-	NPV								
TM																	
Hammoud ²³⁵	1999	1.369	cN0-3	Sel	36	85	(100)"	(100) ^a	92								
Lemaire ²³⁰	2006	1,362	cN0-3	Sys	29	86	(100)"	(100)*	95								
Coughlin ²⁴³	1985	1,259	cN0-3	Sel	29	92	(100) ^a	(100) ^a	97								
Luke ^{242, b}	1986	1,000	cN0-2	Sel	39	85	(100)"	(100) ^a	91								
De Levn ²³⁸	1996	500	cN0-2	Sys	39	76	(100)"	(100)*	87								
Anraku ²²⁷	2010	352	cN0-3	Svs	37	92	(100) ⁿ	(100) ^a									2
Page ^{241, b}	1987	345	cN0-2	Sel	48	73	(100) ^a	(100) ^a	Study	Year	No.	Stage	Thoro	Prev	Sens	Spec"	PPV [*]
Dillemans ²³⁹	1994	331	cN0-3	Sys	41	72	(100)*	(100)*	Eielding ³⁴⁾	2009	68	cN1-3	Sel	87	05	(100) ^a	(100) ^a
Brion ²⁴⁴	1985	153	cN0-2	Sel	35	67	(100)*	(100)*	Stainfort ³³⁴	2005	117	oN1 2	Sug	90	07	(100)	(100)
Fibla ²³¹	2006	142	cN0-3	Sel	42	67	(100)*	(100)*	Catinhana 332	2011	62	-N12 2	Sys	00	05	(100)8	(100)
Iolly ¹⁶⁰	1991	136	cN0.2	Sel	54	92	(100)*	(100)*	Ceunkaya	2011	32	CIN2-5	Sys	00	93	(100)	(100)
Patto ¹²⁵	1000	122	oN0.2	Sal	22	00	(100)*	(100)*	Rintoul	2009	109	cN1-3	Sys	11	91	(100)"	(100)"
Ehnor ^{236, b}	1000	116	aN0.2	Cur I	50	91	(100)	(100)	Gilbert	2009	67	cN1-3	Sel	70	93	$(100)^{*}$	$(100)^{a}$
228	2010	110	cN0-2	l Sys	30	01	(100)	(100)	Yasufuku ³⁴⁹	2005	108	cN1-3	Sys	69	95	(100) ^a	$(100)^{n}$
Annema Catala 153	1007	100	CINO-3	Sei	40	70	(100)	(100)	Yasafuku ³⁵⁰	2004	70	cN1-3	Sys	67	96	(100) ^a	$(100)^{a}$
Gdeedo Dianta 240	1997	100	CN0-5	Sys	32	78	(100)	(100)	Szlubowski ³⁴³	2009	226	cN0-3	Sys	64	89	$(100)^{n}$	$(100)^{a}$
Riordain	1991	/4	CN0-2	Sel	50	81	(100)-	(100)	Ye ³³³	2011	101	cN1-3	Sel	63	95	(100) ^a	$(100)^{a}$
Aaby	1995	57	CN0-3	Sys	44	84	(100)-	(100)*	Cerfolio ³³⁶	2010	92	cN2	Sys	63	57	$(100)^{a}$	$(100)^{a}$
Block	2010	54	cN0-3	Sel	44	88	(100)"	(100)"	Lee BE ³²⁹	2012	73	cN0-3	Sys	62	95	(100) ^a	$(100)^{a}$
Kim ²²⁴	2011	750	cN0	Sys	15	44	(100) ^a	(100) ^a	Bauwens ³⁴⁵	2008	106	cN1-3	Sys	58	95	(100) ^a	(100)*
Choi ²³³	2003	291	cN0	Sys	15	44	$(100)^{a}$	(100)*	Sun ³³⁷	2010	49	cN1-3	Svs	53	85	96	96
Meyers ²²⁹	2006	169	cN0	Sel	8	38	(100) ^a	(100) ^a	Herth ³⁰⁷	2010	139	cN1-3	Sel	52	91	$(100)^{a}$	$(100)^{a}$
Cerfolio ²³²	2006	153	cN0-1	Sys	14	32	(100) ^a	(100) ^a	Memoli ³³¹	2011	100	cN1-3	Sve	47	87	(100)*	(100)8
Deneffe ²⁴⁵	1983	124	cN0	Sel	31	68	(100) ^a	(100)"	Omark Peterson ³⁴⁰	2009	151	eN2.3	Lim	43	85	(100)*	(100)*
Park ²²⁵	2010	78	cN0	Sys	8	50	(100) ⁿ	(100) ^a	Vamfalm ³³⁰	2003	153	obi0.2	Can	2.5	0.0	(100)8	(100)8
Gurses ²³⁴	2002	67	cN0	Sys	15	40	(100) ^a	(100) ^a	Y asuruku	2011	155	CIN0-3	Sys	33	01	(100)	(100)
Leschber ²²²	2008	52	cN0	Sys	19		(100) ^a	I I	Hwangbo Multi 296	2010	150	CIN2-3	Sys	31	84	(100)	(100)
Median: cN0-3	10000		cN0-3	39% 51%	40	83	1.000	1 1	Wallace Wallace	2008	138	CNZ-3	Sys	30	69	(100)*	(100)*
Median: cN0			cN0	75% 818	16	47		tt	Lee HS	2008	102	CN2-3	Sys	30	94	(100)*	(100)*
Median: cro			46% + 30	ene	27	74		tt	Hwangbo	2009	117	CN2-3	Sys	26	90	(100)"	(100)*
Modian: sys			1794 0800	and	30	91	+	++	Yasufuku 143	2006	102	cNI-3	Sys	25	92	(100)"	(100)"
Median, sei	2000	00/0	11.761.00	ser	39	01	(100)	11000	Szlubowski	2010	120	cN0	Sel	22	46	99	93
Summary 1M: med	ian	9267			33	78	(100)"	(100)"	Herth	2006	100	cN0	Sys	21	92	(100)*	(100)*
VAM			*****						Nakajima ³³⁸	2010	49	cN1-3	Sys	18	67	$(100)^{n}$	(100)**
Venissac	2003	154	cN2-3	Sys	71	97	(100) ^a	(100) ^a	Herth ²¹⁰	2008	97	cN0	Sys	10	89	(100) ^a	(100)**
Kimura ²⁵⁰	2007	209	cN0-3	Sel	31	78	(100) ^a	(100) ^a	Median: Prevale	nce ≥ 80	(C)	25	a 8		96	22	0
Lardinois ²⁴⁶	2003	195	cN0-3	Sys	34	87	(100) ^a	(100) ^a	Median: Prevale	nce 60-79					91		
Kimura ¹³⁵	2003	125	cN0-3	Sys	36	85	(100)*	(100) ^a	Median: Prevale	nce 40-59					87		
Sayar ²⁴⁹	2011	104	cN0-2	Sel	29	90	(100) ⁿ	(100)*	Median: Prevale	nce 20-39					87		
Anraku ²²⁷	2010	89	cN0-3	Sys	22	95	(100) ^a	(100) ^a	Median: Prevale	nce < 20					78		
Leschber ²²²	2008	119	cN0	Svs	17		(100)*	1	Medlan, rrevale			10 2			01		*
Summary VAM: m	edian	995			31	89	(100)*	(100)*	Median: cN1-3						91		
LA		110		i i		07	(100)	(100)]	Median: civo			_	_	20	89	110015	14.0.00
Zielinski ³⁶⁴	2007	256	cN0-2	Comol	31	0.4	(100)*	[(100) ^a]	Summary: median	12	2,756			58	89	(100)"	(100)*
1911. 365	2006	130	cN0.2	Compl		94	(100)*	(100) ^a	99								
Witte	40000		N1 11/ W	i compi i			1100	(100)									
Summary I At mode	an	386		compl	31	9.4	(100) ⁿ	1 (100)8 1	08								

First Author	Year	No.	Prev	Sens	Spec	PPV	NP
Changlai ¹⁸³	2001	127	64	88	83	- 90	79
Marom ⁸⁸	1999	79	56	73	94	85	88
Bury ⁵⁵³	1996	30	53	88	86	88	86
Vansteenkiste ¹⁵⁰	1998	56	50	86	43	60	75
Sazon ¹⁹²	1996	32	50	100	100	100	100
Nosotti ⁸⁴	2008	413	48	97	97	.97	97
Fritscher-Ravens ¹²⁰	2003	33	48	75	88	86	79
Wahi ¹⁸⁵	1994	23	48	82	75	75	82
Tatsumi ¹⁸⁶	2000	21	48	80	82	80	82
Guhlmann ¹⁹⁰	1997	32	47	87	100	100	89
Verhagen ²⁶	2004	56	46	58	90	83	71
Vansteenkiste ¹³¹	1998	68	41	93	95	93	03
Vesselle ^{1hi}	2002	118	36	81	96	97	90
Turkmen ¹³⁸	2007	\$0	36	76	TO	67	
Zimma ¹⁶⁷	2002	33	36	83	- 81	71	80
Liewold ³⁸⁷	2000	78	35	03	TR	60	04
Carette 193	1006	27	33	100	100	100	104
Manageriles	1000	20	27	67	9.4	67	0.4
Magnani Di atama ⁹⁰	1999	103	34	07	04	24	04
Pieterman Mag 127	2000	102	21	77	00	-01	93
ren erci 19	2008	30	20	72	92	-51	00
Chan' 17	1995	50	30	18	81	04	89
Demara	2003	50	30	87	0.5	50	
Steinert	1997	47	28	92	97	92	97
Melek	2008	170	28	75	68	48	87
Kieman	2002	88	28	88	86	71	95
Halpern	2005	36	28	50	-77	45	80
Pozo-Rodriguez"	2005	132	27	81	76	56	91
Dunagan'''	2001	81	26	52	88	61	84
Reed"	2003	302	25	61	84	56	87
Bernasconi	2006	51	25	54	76	-44	83
Roberts ¹⁸⁰	2000	100	24	88	91	75	.96
Gonzalez-Stawinski ¹⁰⁰	2003	202	23	66	78	48	88
Bury	1997	64	22	86	100	100	- 96
Takamochi ¹³²	2005	71	21	40	88	46	-84
Saunders ¹⁴⁸	1999	84	20	71	97	86	93
Kernstine ¹⁸³	2002	237	19	82	82	51	95
Kelly ¹³⁴	2004	69	19	62	98	(89)*	92
Nomori ¹³³	2004	80	18	86	97	(86)4	97
Lee ⁴⁰	2007	210	17	61	94	(69)*	. 07
Ehihara ¹³¹	2006	205	15	74	90	1587	04
Poncelet ¹⁴²	2001	61	15	67	85	(43)	9.4
Von Haag ¹⁴⁰	2002	52	12	67	91	(50)2	0.5
Vamamato ¹³⁴	2008	34	0	33	84	(17)	40
Konichi ^[5]	2003	54	0	80	07	isov	0.0
Formali ¹²	2005	84	4	100	92	(402	104
Pariett .	2000	04		100	95	(40)	100
Median: prevalence	21-30			37	81	56	82
Median: prevalence	× 20			71	63	51	04
median: prevalence	240			71	94	51	.95
				-			

Table 1. Common Molecu	Table 1. Common Molecular Abnormalities in Lung Adenocarcinoma									
Molecular Abnormality	Frequency	Possible Management Options								
KRAS	25%	No targeted agent ^a								
EGFR	23%	Erlotinib, afatinib, gefitinib, osimertinib								
ALK	6%	Alectinib, ceritinib, crizotinib								
TP53	4%	No targeted agent ^a								
BRAF	3%	Dabrafenib/trametinib								
PIK3CA	3%	No targeted agent ^a								
MET	2%	Crizotinib								
ROS1	1.5%	Crizotinib, ceritinib								
HER2	1%	Ado-trastuzumab emtansine								
RET	1%	Cabozantinib, vandetanib								
MEK1	0.4%	No targeted agent ^a								
NRAS	0.2%	No targeted agent ^a								
β-catenin	0.2%	No targeted agent ^a								
IDH1	0.1%	No targeted agent ^a								
No identified abnormality	33%	No targeted agent ^a								

^aThese patients may be candidates for pembrolizumab if their tumors exhibit high programmed death ligand 1 expression.

- Molecular classification essential part of routine lung cancer care
- Growing number of targetable molecular alterations
- 30% of the patients diagnosed with NSCLC, tumor cellularity is < 40%
- In approximately 23% of patients, the tissue is not adequate for molecular analyses due to the difficulty of reaching tumor sites with non-invasive methods
- Moreover, in some cases, tumor necrotic cells decrease cellular density, resulting in lowquality sequencing.

The need for new Techniques of Tissue Acquisition

Table 1. Common Mol	ecular Abnormalities in Lun	g Adenocarcinoma
Molecular Abnormality	Frequency	Possible Management Options
KRAS	25%	No targeted agent ^a
EGFR	23%	Erlotinib, afatinib, gefitinib, osimertinib
ALK	6%	Alectinib, ceritinib, crizotinib
TP53	4%	No targeted agent ^a
BRAF	3%	Dabrafenib/trametinib
PIK3CA	3%	No targeted agent ^a
MET	2%	Crizotinib
ROS1	1.5%	Crizotinib, ceritinib
HER2	1%	Ado-trastuzumab emtansine
RET	1%	Cabozantinib, vandetanib
MEK1	0.4%	No targeted agent ^a
NRAS	0.2%	No targeted agent ^a
β-catenin	0.2%	No targeted agent ^a
IDH1	0.1%	No targeted agent ^a
No identified abnormality	33%	No targeted agent ^a

These patients may be candidates for pembrolizumab if their tumors exhibit high programmed death ligand 1 expression.

IntraNodal Forceps Biopsy

Herth FJ, Morgan RK, Eberhardt R, Ernst A: EBUS-guided miniforceps biopsy in the biopsy of subcarinal masses in pts with low likelihood of NSCLC. Ann Thorac Surg 2008; 85: 1874–1878

IntraNodal Forceps Biopsy

Modality	Diagnostic yield	Numbers	Significance
EBUS-TBNA	81%	60/74	p=0.09
EBUS-MFB	91%	67/74	
TBNA+MFB	97%	72/74	p<0.001

Chrissian A, Misselhorn D, Chen A: Endobronchial-ultrasound guided miniforceps biopsy of mediastinal and hilar lesions. Ann Thorac Surg 2011; 92: 284–288

Official Case Reports Journal of the Asian Pacific Society of Respirology

Respirology Case Reports OPEN CACCESS

Endobronchial ultrasound-guided transbronchial cryo-nodal biopsy: a novel approach for mediastinal lymph node sampling

Hari Kishan Gonuguntla¹^o, Milap Shah², Nitesh Gupta³^o, Sumita Agrawal⁴, Venerino Poletti⁵ & Gustavo Cumbo Nacheli⁶

¹Department of Interventional Pulmonology, Yashoda Hospital, Hyderabad, India.

⁴Department of Pulmonary, Critical Care and Sleep Medicine, Medipulse Hospital, Jodhpur, India.

⁵Department of Diseases of the Thorax, Ospedale GB Morgagni, Forli, Italy.

⁶Division of Bronchoscopy and Interventional Pulmonology, Pulmonary and Critical Care Division, Spectrum Health Medical Group, Grand Rapids, MI, USA.

²Department of Laboratory Medicine, Yashoda Hospital, Hyderabad, India.

³Department of Pulmonary, Critical Care and Sleep Medicine, VMMC and Safdarjung Hospital, New Delhi, India.

Figure 1: Case 1 – (A) Non-contrast CT thorax showing sub-carninal and hilar nodes, (B) Non caseating epithelioid granuloma with giant cells and fibrosis. H&E 40x, CD4 cells (C) are is more evident than CD 8 cells (D) while few B lymphocytes are highlighted with CD 20 (E); Case 2 – (F) Contrast CT thorax showing left hilar mass with paratracheal lymphnodes, (G) Adenocarcinoma cells,H&E ,10x (H) with positivity for ROS1(D4D6) , 10x; Case 3 – (I) Contrast CT showing left interlobar node, (J) Metastatic Carcinoma from breast,H&E,10x, Tumour cells are positive for Her2 (K) ,ER (L) and GATA3 (M); Case 4 – (N) Non-contrast CT showing right parahilar lesion with sub-carinal lymphnode, (O) Necrotising Granuloma,H&E,40x (P) Ziehl-Neelsen stain highlights few pink rod shaped bacilli (red arrow), CD8 cells (Q) are more evident than CD 4 cells (R) while few B lymphocytes are highlighted with CD 20 (s)

EBUS - Mediastinal Cryobiopsy

No needle Technique

Dr. Hari Kishan Gonuguntla MD.DM

Transbronchial mediastinal cryobiopsy in the diagnosis of mediastinal lesions: a randomised trial

Jing Zhang, Jie-Ru Guo, Zan-Sheng Huang, Wan-Lei Fu, Xian-Li Wu, Na Wu, Wolfgang M. Kuebler, Felix J.F. Herth, Ye Fan European Respiratory Journal 2021 58: 2100055; **DOI:** 10.1183/13993003.00055-2021

Results

Definitive Diagnosis - 181/197 patients (93.3%) 152 patients - Both TBNA and cryobiopsy - yield diagnosis

26 additional cases where TBNA failed - Cryobiospy established the diagnosis

- 6 NSCLC6- Lymphoma1 Seminoma8 Tuberculosis
- 5 Sarcoidosis

Conversely - 3 NSCLC patients - diagnosis was established only by TBNA

Overall diagnostic yield for TBNA - 79.9% and for Cryo 91.8%

Sub group analysis - no difference in diagnostic yield in common lung cancer (94.1% for TBNA vs 95.6% for cryobiopsy)

The diagnostic yield of mediastinal cryobiopsy was significantly higher in Uncommon tumors (91.7% versus 25.0%)

Benign lesions - 80.9% versus 53.2%

First author	Year	Anesthesia	Airway	Targeted LN	Needle size / passes	ROSE	Cryo size	Track creation	# MCB pass	Freezing time
Zhang(28)	2021	CS	transoral	2R/L to 12R/L	?G x 4	no	1.1	EC knife	3	7
Fan(29)	2023	CS	transoral	2R/L to 13R/L	22G x 4	no	1.1	EC knife	1	7
Ariza-Prota(30)	2023	CS	transoral	7, 4R mostly	22G x 3-5	no	1.1	TBNA	3	4
Gershman(31)	2022	CS/DS	LMA	7.4L	19G x 3	no	1.1/1.7	TBNA/Nd YAG/ track dilation	2-4	3-4
Oikonomidou(50)	2022	CS/DS	LMA/ETT+ jet vent	N/A	19/21/22G x 4	no	1.1	TBNA + 19G sheath	2	3
Maturu(32)	2023	GA	LMA	7,4R,11L,11R	19G	yes	1.1	TBNA	4-7	5-6
Gonuguntla (37)	2021	GA	LMA	7, 11L	19/21/22	yes	1.1	TBNA	1-2	3
Ariza-Prota (45)	2022	CS	transoral	7,11R	22G x 4	yes	1.1	TBNA	3	3
Genova(33)	2022	DS	2	7, 10R	19G x 3	no	1.1	TBNA	2	4
Salcedo-Lobera(51)	2022	CS	transoral	7, retrotrach mass	22G x 3	no	1.1	TBNA	1-2	8
Zhang(27)	2020	CS	transoral	10L	22G x 4	no	1.1	EC knife	2	15
Huang(36)	2021	CS	transoral+ esophageal	paraaortic LN	21G x 4	no	1.1	air inflation + EC knife	2	7
Ishiguro(52)	2022	N/A	2	esophageal mass	22G x 3	no	2	TBNA	2	?
Kho(38)	2022	TIVA	RB	7	22G x 4	yes	1.1	TBNA	2	7
Tamburrini(34)	2022	GA	RB	7	21G	no	1.1	TBNA+forceps	2	4
Zhang(35)	2022	CS	transoral	7	21G x 4	no	1.1	TBNA+sheath	1	7
Hetze(53)l	2023	?	transoral	4L.	(?)G x 4	yes	1.1	EC knife	several	7
Schwick (41)	2023	GA	ETT	7	19G x 2-3	no	1.1	TBNA + sheath	1	5-7
Takemura(54)	2023	?	?	11s	25G x 3	no	1.7	TBNA	4	?
Zhang(55)	2023	CS	transoral	IIL COU	rtesy-Arthur	Oliver R	omero	EC knife	1	7

Table 2. Variability in Transbronchial Mediastinal Cryobiopsy technique

LMA, laryngeal mask airway; ETT, endotracheal tube; RB, rigid bronchoscopy, LN, lymph node, G, gauge; EC, electrocautery; Nd YAG, neodymium-doped yttrium aluminum garnet

Take Home Message

- EBUS Diagnostic procedure of choice in Lung Cancer Staging
- EBUS + EUSb Complete Mediastinal Staging
- In the Era of Molecular Analysis More tissue acquisition
- Mediastinal Cryo biopsy safe and feasible
- Mediastinal Cryobiopsy Improves the Diagnostic yield in all pathologies
- Training aspects Simulator Training is essential

CHANNELS

HOME

VIDEOS

INTERVENTIONAL PULMONOLOGY

@academyofbronchoscopy 1.02K subscribers 136 videos

PLAYLISTS

This channel is dedicated for procedural training in Interventional Pulmono... >

COMMUNITY

Customize channel

Q

ABOUT

Manage videos

Email: harikishang@gmail.com

